

Edinburgh Research Explorer Different cardiorespiratory effects of indoor air pollution intervention with ionization air purifier: Findings from a randomized, double-blind crossover study among school children in Beijing

Citation for published version:

Dong, W, Liu, S, Chu, M, Zhao, B, Yang, D, Chen, C, Miller, MR, Loh, M, Xu, J, Chi, R, Yang, X, Guo, X & Deng, F 2019, 'Different cardiorespiratory effects of indoor air pollution intervention with ionization air purifier: Findings from a randomized, double-blind crossover study among school children in Beijing', Environmental Pollution, vol. 254, pp. 113054. https://doi.org/10.1016/j.envpol.2019.113054

Digital Object Identifier (DOI):

10.1016/j.envpol.2019.113054

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: **Environmental Pollution**

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Different cardiorespiratory effects of indoor air pollution intervention with
2	ionization air purifier: findings from a randomized, double-blind crossover
3	study among school children in Beijing
4	
5	Wei Dong ^{1\triangle} , Shan Liu ^{1\triangle} , Mengtian Chu ¹ , Bin Zhao ² , Di Yang ¹ , Chen Chen ² , Mark R.
6	Miller ³ , Miranda Loh ⁴ , Junhui Xu ¹ , Rui Chi ¹ , Xuan Yang ¹ , Xinbiao Guo ¹ , Furong
7	Deng* ¹
8	¹ Department of Occupational and Environmental Health Sciences, School of Public
9	Health, Peking University, Beijing 100191, China
10	² Department of Building Science, School of Architecture, Tsinghua University,
11	Beijing 100084, China
12	³ University/BHF Centre for Cardiovascular Science, Queens Medical Research
13	Institute, The University of Edinburgh, 47 Little France Crescent Edinburgh, EH16
14	4TJ, UK
15	⁴ Institute of Occupational Medicine, Research Avenue North Riccarton, Edinburgh,
16	EH14 4AP, UK
17	
18	$^{\triangle}$ These authors contributed equally to this work.
19	*Corresponding Author:
20	Furong Deng, MD, PhD
21	Department of Occupational and Environmental Health Sciences, Peking University
22	School of Public Health, No. 38 Xueyuan Road, Beijing 100191, China, E-mail:
23	lotus321321@126.com, Tel: 86-10-82805779, Fax: 86-10-82805779.
24	
25	
26 27	
28	
29	

30 Declarations of interest

- 31 None.
- 32

33 Abstract

34 Indoor air pollution is associated with numerous adverse health outcomes. Air 35 purifiers are widely used to reduce indoor air pollutants. Ionization air purifiers are 36 becoming increasingly popular for their low power consumption and noise, yet its 37 health effects remain unclear. This randomized, double-blind crossover study is 38 conducted to explore the cardiorespiratory effects of ionization air purification among 39 44 children in Beijing. Real or sham purification was performed in classrooms for 5 40 weekdays. Size-fractionated particulate matter (PM), black carbon (BC), ozone (O_3) , 41 and negative air ions (NAI) were monitored, and cardiorespiratory functions were 42 measured. Mixed-effect models were used to establish associations between 43 exposures and health parameters. Real purification significantly decreased PM and 44 BC, e.g. PM_{0.5}, PM_{2.5}, PM₁₀ and BC were dereased by 48%, 44%, 34% and 50% 45 respectively. O₃ levels were unchanged, while NAI was increased from 12 to 12,997 46 cm⁻³. Real purification was associated with a 4.4% increase in forced exhaled volume 47 in 1 second (FEV₁) and a 14.7% decrease in exhaled nitrogen oxide (FeNO). 48 However, heart rate variability (HRV) was altered negatively. Interaction effects of 49 NAI and PM were observed only on HRV, and alterations in HRV were greater with 50 high NAI. Ionization air purifier could bring substantial respiratory benefits, however, 51 the potential negative effects on HRV need further investigation. Keywords: ionization air purifier; size-fractionated PM; children; lung function; <mark>52</mark> 53 cardiac autonomic function.

- **54 Capsule:** This study suggested that ionization air purification could bring substantial
- 55 respiratory benefits while potential negative effects on cardiac autonomic function.

1.Introduction

57	Numerous studies have reported associations between air pollution and adverse
58	health outcomes among different populations. On average, people spend >80% of
59	their time within indoor environments(Almeida-Silva et al., 2014; Klepeis et al.,
60	2001; Zhao et al., 2018), and it has been indicated that indoor air pollution could pose
61	an equal, or even higher, risk to morbidity and mortality compared to ambient air
62	pollution(Karottki et al., 2014; Karottki et al., 2015). Indeed, World Health
63	Organization (WHO) reported that 4.2 million and 3 million premature deaths were
64	attributable to household and ambient air pollution, respectively, in 2012(WHO,
65	2014, 2016). At present, indoor PM is still a severe environmental problem in both
66	developed and developing countries. For instance, in China, some researchers
67	reported that the average fine particulate matter $(PM_{2.5})$ concentration reached about
68	$60 \ \mu g/m^3$ within residences in urban Beijing(Pan et al., 2018), largely higher than the
69	WHO Interim Target 1 (35 μ g/m ³) for outdoor pollution. Furthermore, it was
70	observed that adverse health effects are associated with indoor PM exposure in
71	countries with relatively low pollution levels (<20 μ g/m ³)(Allen et al., 2011; Karottki
72	et al., 2013).
73	Air purifiers have been widely used as an effective measure to reduce indoor
74	particulate matter (PM) pollution. Previous studies have investigated different kinds
75	of air purifiers and their health effects. The mechanic filters, such as high-efficiency
76	air particulate (HEPA) filtration purifiers, could lower indoor pollution and have

77	cardiorespiratory benefits in human subjects(Huichu Li et al., 2017; Luo et al., 2018;
78	Liu et al., 2018; Butz et al., 2011; Kajbafzadeh et al., 2015) while other studies
79	demonstrated that HEPA air purifiers could not significantly improve
80	cardiorespiratory function in adults(Cui et al., 2018; Day et al., 2017a). Also, some
81	researchers paid attention to other types of purifiers, such as electrostatic precipitator
82	purifiers (ESP)(Day et al., 2017a; Skulberg et al., 2005). Association between the use
83	of ESP and improved lung function was found among office workers(Skulberg et al.,
84	2005). However, another study showed that the operation of ESP could generate
85	incidental ozone (O ₃)(Day et al., 2017b), which is recognized as a potential health
<mark>86</mark>	hazard to people(Day et al., 2017b; Hongyu Li et al., 2017). It is reported that ESP
87	could even increase some cardiovascular risks (Day et al., 2017a). Besides,
87 88	could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory
87 88 89	could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While
87 88 89 90	could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not
87 88 89 90 91	 could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not been widely explored.
 87 88 89 90 91 92 	 could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not been widely explored. Currently, due to the low power consumption and noise, ionization air purifiers
 87 88 89 90 91 92 93 	 could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not been widely explored. Currently, due to the low power consumption and noise, ionization air purifiers are manufactured for use in buildings such as homes and industrial environments in
 87 88 89 90 91 92 93 94 	could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not been widely explored. Currently, due to the low power consumption and noise, ionization air purifiers are manufactured for use in buildings such as homes and industrial environments in different countries(Berry et al., 2007; Grinshpun et al., 2005; Shiue and Hu, 2011).
 87 88 89 90 91 91 92 93 94 95 	could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not been widely explored. Currently, due to the low power consumption and noise, ionization air purifiers are manufactured for use in buildings such as homes and industrial environments in different countries(Berry et al., 2007; Grinshpun et al., 2005; Shiue and Hu, 2011). Nowadays more and more primary and middle schools have installed ionization air
 87 88 89 90 91 91 92 93 94 95 96 	could even increase some cardiovascular risks (Day et al., 2017a). Besides, associations between the use of electret air filters and improved cardiorespiratory function were found among adults (Chen R et al., 2015; Chuang et al., 2017). While to the best of our knowledge, the ionization air purifier and its health effects have not been widely explored. Currently, due to the low power consumption and noise, ionization air purifiers are manufactured for use in buildings such as homes and industrial environments in different countries(Berry et al., 2007; Grinshpun et al., 2005; Shiue and Hu, 2011). Nowadays more and more primary and middle schools have installed ionization air purifier for indoor intervention in Beijing, China. Although given evidences have

97 shown high purification efficiencies of ionization air purifiers on air pollutants

98	(Grabarczyk, 2001; Krueger and Reed, 1976), it remains unknown related to its
99	cardiorespiratory effects. Moreover, some studies showed that some ionization air
100	purifiers could generate O ₃ in a similar manner to ESP(Niu et al., 2001). This also
101	presents an initial route of concern that ionization air purifiers may have unforeseen
102	effects on health.

103 Children are considered as a potentially susceptible population to air pollution 104 since their organ systems are developing rapidly(Dietert et al., 2000; Hoek et al., 105 2012; Morgenstern et al., 2008; Weinmayr et al., 2010). Previous evidences have 106 showed that exposure to PM was associated with adverse cardiorespiratory effects 107 among children(Hoek et al., 2012; Calder ón-Garcidue ñas et al., 2007). School 108 children spend most of their daytime in classrooms, where indoor PM could be an 109 underlying health risk factor. Air purifiers have been installed in schools to protect 110 children from air pollution in cities such as Beijing(Mo, 2017), thus it is necessary to 111 explore the potential effects of purifiers that have been put into use. Therefore, we 112 conducted a randomized, double-blind crossover study using a commercially 113 available ionization air purifier among a group of school children to: 1) examine the 114 purification efficiency of the purifier in reducing size-fractionated PM and black 115 carbon (BC); 2) evaluate O₃ and negative air ions (NAI) emissions from purifiers; 3) 116 explore the cardiorespiratory effects of ionization air purification; 4) establish associations between size-fractionated PM, BC, NAI and health parameters. The 117 118 findings will provide evidence-based guidance on the application of ionization air

purifiers and could bring new insight in protecting children health from indoor airpollution.

121 **2.Methods and Materials**

122 **2.1.Study design and participants**

123 A randomized, double-blind crossover study was conducted from December, 124 2017 to March 2018 in a middle school in Daxing District, a suburban area with 125 relatively high air pollution, in the south of Beijing, China. The school was basically 126 constructed in cement structure. The surfaces of walls and floors had been slightly 127 damaged, which could generate cement dust, one of the important sources for PM(Tian et al., 2015). We calculated the sample size based on the formula N =128 $\frac{(z_{\alpha}+z_{\beta})^2\sigma^2}{\sigma^2}$. Specifically, $\alpha = 0.05$, $\beta = 0.10$, d = 0.037 L and $\sigma = 0.083$ L, the latter 129 130 two parameters were based on the lung function parameter, forced exhaled volume in 131 1 second (FEV₁) from a previous study (Gao et al., 2013). The sample size we calculated was 40. Taking into account the 20% rate of loss to follow-up, the final 132 133 sample size was determined to be 48. As there are only 6 classes of grade one in this 134 junior high school, we randomly recruited 8 children per classroom for a total of 48 135 participants with the following certain criteria:1) aging from 11 to 14; 2) living in 136 Beijing for more than two consecutive years; 3) not suffering any health conditions; 137 4) having no asthma and thoracic surgery history; 5) living in school dormitories from 138 Monday to Friday.

139	Before the study, six ionization air purifiers were installed about 1.2 meters
140	below the ceilings, in an identical position in each classroom. As the ceilings were 4.5
141	meters high in every classroom, the purifiers were 3.3 meters from the floor
142	vertically. Two different treatments were employed, "real" (machine turned on) and
143	"sham" (machine turned off) purification, in a random order with a 2-month washout
144	period. We considered that exams and other school events might influence the health
145	outcomes of the participants (e.g. heart rate), so those time periods were avoided.
146	Besides, after winter holiday, it was after two weeks that we began the second period
147	of the study in order that the participants got used to the school environment. The
148	treatments were randomized by classrooms as is shown in the flow chart (Figure 1),
149	and Table S1 in supplemental material presents the details for each classroom
150	including the date of treatment and the number of participants. Since the operation of
151	the purifiers was silent and the indication lights were removed, both the participants
152	and field investigators could not distinguish the operation statuses. Each treatment
153	lasted five weekdays (Monday to Friday) starting at 7:00 and ending at 17:00
154	according to the school schedule. The study was conducted in the winter heating
155	season in Beijing, thus all windows and doors were kept closed except two small
156	ventilation openings with an area of 0.09 m^2 . The participants were instructed to stay
157	within the classrooms as much as possible. A self-administered activity questionnaire
158	was given to each participant during the treatments. They were told to record the time
159	and place when they went outside, such as lunch break and toilet visit.

160	Before the study began, the study protocol was approved by the Review Board of
161	Peking University Health Science Center, which conforms to Declaration of Helsinki.
162	Before inclusion, written informed consents were provided by all participants and
163	their guardians, who could withdraw from the study at any time.
164	2.2.Exposure Measurements
165	All exposure measurement devices were installed at the height of breathing zone
166	(about 1.2 m high from the floor) at the same position of each classroom.
167	Measurements started at 7:00 am and ended at 17:00 pm from Monday to Friday.
168	Exposure measurements included size-fractionated PM, BC, O ₃ , NAI, carbon dioxide
169	(CO ₂), noise, temperature and relative humidity (RH). Machines used for
170	measurements were as follows: size-fractionated PM (Model Handheld PC3016;
171	GrayWolf Inc., USA), BC (microAeth Model AE51; Magee Scientific, Berkeley, CA,
172	USA), O ₃ (Aeroqual Series 500; Aeroqual, New Zealand), CO ₂ (Model HCZY-1;
173	Tianjianhuayi Inc., Beijing, CHINA), noise (Model ASV5910; Hangzhouaihua Inc.,
174	Hangzhou, CHINA), NAI (COM-3200 Pro II; Com System.Inc, Japan), real-time
175	temperature and RH (Model WSZY-1B; Tianjianhuayi Inc., Beijing, CHINA). All
176	exposure measurements were recorded as 5-min segments in line with heart rate
177	variability (HRV) indices, and calculated as 1-h averages for ST-segment elevation
178	and 8-h (08:00-16:00) averages for the other health measurements.

2.3.Health measurements

180	Health r	parameters	were	measured	by	trained	investig	ators of	n Mondav	V,
					~					

- 181 Wednesday and Friday of each treatment period. Pulmonary tests, blood pressure
- 182 (BP) tests and exhaled breath condensate (EBC) collections were conducted at 7:00-
- 183 9:00 am and 15:00-17:00 pm. Ambulatory electrocardiogram (ECG) monitoring,
- (184) including HRV, heart rate (HR) and ST-segment elevation, began at 8:00 am, and
- 185 ended at 15:00-16:00 pm. To avoid possible variation arising between different
- 186 investigators, the same investigator ran the same tests throughout the study wherever
- 187 possible.

188 **2.3.1.Pulmonary tests**

- 189 FeNO was measured by the NIOX VERO® machine (Aerocrine AB, Solna,
- 190 Sweden) following standardized procedures(Peltier, 2005). Participants were asked to
- 191 refrain from exercise, food and beverage 1 hour before. After the FeNO tests, a
- 192 portable PEF meter (Model 2110; Vitalograph Ltd., UK) was used to measured FEV₁
- 193 and peak expiratory flow (PEF) simultaneously following American Thoracic
- 194 Society/European Respiratory Society (ATS/ERS) recommendations(Miller et al.,
- 195 2005). For FEV₁ and PEF, each measurement included two blows, and two to five
- 196 measurements were conducted in each participant for each time. Once relative
- 197 difference of two measurements was less than 10%, the better result of two blows was
- 198 recorded for final analysis.

199 **2.3.2.Blood pressure tests**

200 Following at least 10 minutes of rest, upper arm blood pressure was measured

201 using an automated oscillometric monitor (HEM-7052; Omron Healthcare Co. Ltd.,

202 Japan) at three times with a minimum 3-minute interval. We calculated the averages

203 of the blood pressure values (from the second to the last measurement) within a 5-

204 mmHg range of difference and recorded them as the final outcomes.

205 **2.3.3.** Ambulatory electrocardiogram (ECG) monitoring

ECG monitoring were conducted using a 12-channel Holter monitor (model

207 MGY-H12; DM Software Inc., USA), which was positioned on the participants using

a standard protocol. The participants were instructed not to take any designated food

209 or drink (e.g. coffee, wine, tea) that may affect HRV and avoid high intensity exercise

210 on the day of, and the day before, the health measurements. Participants were

211 instructed to wear the Holter monitors for 7-8 hours, during which they were told to

stay indoor as much as possible and record their activities in the formatted diaries.

213 Further details and data processing procedure have been documented in our previous

214 work(Pan et al., 2018).

215 **2.3.4.** Sample collection and biomarker assay

EBC was collected using a designated device (Dingblue Tech., Ltd, China) that

217 have been used in a previous study(Zheng et al., 2017), and according to ATS/ERS

- recommendation(Horv áth et al., 2005). All samples were immediately stored at -80°C.
- 219 Malondialdehyde (MDA) were measured as an indicator of oxidative stress in EBC.

220	The method of high-performance liquid chromatography (HPLC) with fluorescence
221	detection was used according to previous study(L ärstad et al., 2002).
222	2.4. Statistics Analysis
223	We used paired t-tests to compare exposure levels (8-h averages) and health
224	measurements between two periods. Mixed-effect models were conducted to examine
225	the effects of real purification and different exposures on the health parameters, and
226	explore the possible interaction effects between different exposures and between
227	gender and indoor air pollutants. Health measurements were log10-transformed to
228	improve the normality and stabilize the variance due to skewed distribution, except
229	ST-segments elevation, among which there were zero values. We controlled for
230	personal characteristics, including age, gender and BMI, classroom and long-term
231	time trend, including day-of-measurement and squared day-of-measurement, as fixed-
232	effect terms. Day-of-measurement means the count of the day that the measurement
233	was conducted over the whole study course. In addition, other potential confounders
234	were included as fixed-effect terms such as hour of day, day of week, noise,
235	temperature, RH and CO ₂ . ⁹
236	To investigate the effect of purification and exposures, mixed-effect models were
237	fit, in which real purification was coded as "1" and sham purification as "0":
238	$Y_{it}=b_0+u_i+b_1x_1+\ldots+b_px_p+\beta$ (treatment or exposure) $+\varepsilon_{it}$
239	where Y_{it} is the logarithm of health measurement in subject <i>i</i> at time <i>t</i> , b_0 is the overall
240	intercept, u_i is the specific random intercept for the subject <i>i</i> , x_1 - x_p are covariates, b_1 -

241 b_p are regression coefficients for x_1 - x_p , β is the regression coefficient for treatment or 242 exposure, and ε_{it} is the error for subject *i* at time *t*.

We estimated percent change with 95% confidence intervals (CI) in log₁₀-243 244 transformed health measurements, and value changes of ST-segment elevation per 245 interquartile range (IQR) increase in moving average of each exposure measurements with 95% confidence intervals. Percent changes were calculated as $[10^{(\beta \times IQR)} - 1] \times 100\%$, 246 with 95% CI $\{10^{[IQR \times (\beta \pm 1.96 \times SE)]} - 1\} \times 100\%$, where β and SE were the estimated 247 248 regression coefficients and its standard error, respectively(Wu et al., 2010). All data 249 were analyzed using the "nlme (version 3.1-128)" package for R software (version 3.3.2; 250 R project for Statistical Computing).

251 **3. Results**

252 **3.1. Participants characteristics**

Forty-four participants completed the whole study (see **Table 1**). There were 24 (55%) boys and 20 (45%) girls, and the ages ranged from 11 to 14 years old, with an average of 12.4 (\pm 0.8). The average of body mass index (BMI) was 18.7 \pm 3.3 among the participants. The variance homogeneity test showed that there was no significant difference among the participant groups from different classes. According to the selfreported activity diaries, all participants spent more than 80% of their time in classroom during the exposure monitoring period (data not shown).

260 **3.2. Exposure measurements statistics**

261	Table 2 presents the comparisons of indoor exposure measurements. Size-
262	fractionated PM and BC were significantly lower during real purification (P<0.05).
263	The purification efficiency for BC was the highest with a reduction rate of 50%. For
264	size-fractionated PM, higher purification efficiency was shown in smaller PM ($PM_{0.5}$
265	VS PM _{2.5} VS PM ₁₀ : 48% VS 44% VS 34%). NAI was markedly higher during real
266	purification (12997 cm ⁻³ VS 12 cm ⁻³ , P<0.001). No significant difference was
267	observed in O ₃ , RH, temperature and noise between two scenarios.
268	3.3. Health measurements statistics
269	Table 2 also gives the comparison for health measurements among the
270	participants between two periods. FEV1 and PEF were higher during real purification,
271	however, only the difference in FEV_1 was statistically significant (2.34 L VS 2.19 L,
272	P<0.01). FeNO was found significantly lower during real purification (15 ppb VS 17
273	ppb, P<0.01). MDA in EBC tended to be lower after real purification compared to
274	sham purification (0.20 μ mol/L VS 0.24 μ mol/L, P=0.06). Blood pressure indices
275	showed no significant differences between the two periods. Interestingly, we observed
276	marked significant differences in HRV indices. Power in high frequency (HF), power
277	in low frequency (LF), and standard deviation of all NN intervals (SDNN) were
278	significantly lower during real purification, while heart rate (HR) and LF to HF ratio
279	(LF/HF) were significantly higher. II_ST, V2_ST and V5_ST are three representative
280	leads in ST-segment analysis as an indicator for ischemic burden(Langrish et al.,
281	2012). Slight decreases in ST-segment elevation were observed in the three leads,

282	among which that in V5_ST showed statistical significance (P<0.01). Additional
283	testing confirmed that the Holter monitors were not directly disturbed by the
284	operation of ionization air purifiers (see Supplementary Material, Supplemental Test
285	and Table S2).
286	In addition, we compared the health measurement of Monday morning (before
287	treatment) and Friday afternoon (after treatment) between real and sham purification
288	periods (Table 3). The results are in lines with the averages of three days shown in
289	Table 2, which supports that the health changes were attributed to the indoor air
290	purification rather than the different time periods.
291	3.4. Estimated effect of air purification
292	To explore estimate effects of purification on the health measurements, we
293	conducted mixed-effect models after adjusting potential confounders (see Figure 2).
294	As Figure 2 shows real purification was associated with 4.4% increase in FEV_1 and
295	14.7% decrease in FeNO compared to sham purification among all the participants.
296	Blood pressure results did not show significant differences. Significant alterations
297	were observed among all HRV indices. HF, LF and SDNN were decreased by 18.8%,
298	13.4% and 5.4%, respectively, and HR and LF/HF was increased by 3.1% and 14.2%,
299	respectively. Elevations in II_ST and V5_ST were decreased by 0.008mV and
300	0.019mV, respectively.

3.5. Estimated effect of PM and BC

- 302 As the ionization air purification could significantly reduce the indoor levels of
- 303 PM and BC, we analyzed the estimated effects of those pollutants on health
- 304 parameters using mixed-effect models.
- **Figure 3A** shows the estimated percent changes in respiratory measurements per
- 306 IQR increases in size-fractionated PM and BC. The greatest decrease of FEV₁ was
- 307 6.5% per IQR increase in PM_{0.5} (17.9 μ g/m³), and the greatest increase of FeNO was
- 308 23.5% per IQR increase in PM_{1.0} (22.2 μ g/m³). BC was associated with 7.0% decrease
- in FEV₁ and 22.1% increase in FeNO per IQR increase in BC (3.6 μ g/m³). Increases
- 310 in MDA in EBC were associated with levels of PM and BC, but these effects were not
- 311 statistically significant.
- 312 Figure 3B shows percent changes in HRV indices per IQR increases in size-
- 313 fractionated PM and BC over different moving averages. The greatest decrease in HF
- 314 was 16.1% per IQR increase in $PM_{0.5}$ (17.9 μ g/m³) at 5-min moving average. The
- 315 smaller PM was, the stronger the effect observed. The greatest decreases were
- 316 observed at 5-min moving averages for $PM_{0.5}$ and $PM_{1.0}$, but 2-h moving averages for
- 317 PM_{2.5}, PM₅ and PM₁₀. For BC, greatest decrease in HF was 18.8% per IQR increase
- 318 $(3.6 \,\mu\text{g/m}^3)$ at 3-h moving average. The association patterns of other indices were
- 319 similar to HF (see Figure 3B and Supplementary Material, Figure S1). Figure 3C
- 320 shows estimated changes in ST-segment elevation per IQR increase in size-
- 321 fractionated PM and BC. We observed significant increases in V5_ST elevation

322 associated with $PM_{0.5}$ and $PM_{1.0}$. The greatest increase in V5_ST elevation was 0.022

323 mV per IQR increase in $PM_{1.0}$ (22.2 µg/m³).

324 **3.6.** The interaction of NAI with PM and BC

- 325 Significance was observed in the interaction effects of NAI with PM and BC on
- 326 HRV but not on pulmonary function. Therefore, we analyzed the effect on HRV in
- 327 real and sham purification separately (see Figure 4). In general, the effects of PM_{2.5},
- 328 PM_{5.0} and PM₁₀ were close at different moving averages between two periods.
- However, the effects of PM_{0.5}, PM_{1.0} and BC appeared greater during real
- 330 purification. A reduction of 35.1% in HF was observed per IQR increase in $PM_{1.0}$
- 331 $(22.2 \ \mu g/m^3)$ at 5-min moving average during real purification, but only 25.2% during
- 332 sham purification. The results were similar for LF and SDNN during the two periods
- 333 (see Supplementary Material Figure S3). Besides, no significant interaction effects of
- 334 gender and indoor air pollutants was found on cardiorespiratory function (Table S3).

335 **4. Discussion**

To date, this is the first study to investigate the health effects of ionization air purification on cardiorespiratory parameters among children. The purifier used in this study had a high efficiency for reducing size-fractionated PM and BC. Consequently, we found improved lung function, reduced airway inflammation, less oxidative stress and a lowered potential myocardial ischemia risk after purification. However,

- 341 potentially negative changes were observed in HRV indices. Further analysis showed
- 342 that increases in PM and BC were associated with decrements in all health

343	parameters, indicating that reduction of the pollution might bring improvements in all
344	measured cardiorespiratory parameters. However, heterogeneity was observed related
345	to the effect of NAI. Our findings suggested exposure to high NAI might have
346	adverse effect on cardiac autonomic function while other parameters were positively
347	affected. To conclude, adverse respiratory effects of PM and BC were substantially
<mark>348</mark>	ameliorated by using ionization air purification, however, the benefits in cardiac
<mark>349</mark>	autonomic function of the reduction in particulate pollution appeared to be lost due to
350	the high levels of NAI emitted by air purifiers.
351	Previous studies have examined the efficiencies of ionization purifiers, but not to
352	the depth of the current study that examined reduction efficiency on size-fractionated
353	PM and BC. Higher purification efficiencies were found for BC and smaller PM (i.e.
354	$PM_{0.5}$, $PM_{1.0}$ and $PM_{2.5}$) compared to $PM_{2.5-10}$. The reduction rate for BC and $PM_{0.5}$
355	were about 50% while that was about 30% for PM_{10} . Previous studies have
356	demonstrated health benefits from lowering indoor pollution with filtration air
357	purifiers among different populations(Brown et al., 2014; Huichu Li et al., 2017). In
358	our study, different cardiorespiratory effects were found among the children after
359	ionization air purification. Compared to filtration air purifiers, the essential feature of
360	ionization air purifier is to emit NAI, which could enhance the gravitational
361	settlement of airborne particles(Grinshpun et al., 2005). Therefore, we conducted
362	further analysis to explore the associations between PM, BC and NAI with different
363	health parameters.

364	As is implied in Figure 3, decreases in size-fractionated PM and BC were
365	associated with improvements of those health outcomes. Several previous studies
366	investigating the potential respiratory improvements brought by indoor air
367	purification found similar results with our present study (Skulberg et al., 2005;
368	Weichenthal et al., 2013), whereas others did not. It is reported that no significant
369	changes of lung function were found with 50% purification efficiency of $PM_{2.5}$ from
370	$8\mu g/m^3$ to $4\mu g/m^3$ among the elderly (Karottki et al., 2013). Another study conducted
371	among young, healthy adults demonstrated that the beneficial impacts on lung
372	function were not statistically significant with 57% reduction in $PM_{2.5}$ concentration
373	from 96.2 to 41.3 μ g/m ³ (Chen R et al., 2015). Compared with adults, children are
374	believed to be especially susceptible to the adverse effects of air pollution (Dietert et
375	al., 2000; Hoek et al., 2012; Morgenstern et al., 2008; Weinmayr et al., 2010), thus
376	our study may find some potential respiratory benefits in such vulnerable population.
377	Furthermore, our present study explored the improvements of lung function with
378	decreases in size-fractioned PM, not just PM _{2.5} and found higher purification
379	efficiencies for smaller PM compared to PM _{2.5} . Some studies indicated that smaller
380	particles have larger surface areas for a given mass, might contain more toxic
381	substances and elicit greater health effects on people (Chen W et al., 2015; Lin et al.,
382	2016), which suggested the decreases in smaller PM may have greater improvements
383	of lung function. Although the purification efficiency of $PM_{2.5}$ in this study was less
384	than those mentioned above (Karottki et al., 2013; Chen R et al., 2015), we found

385	greater purification efficiencies of smaller PM than PM _{2.5} while those studies did not
386	explore other sizes of PM other than PM _{2.5} . In previous studies, inflammation and
387	oxidative stress have been considered plausibly as the main mechanism through
388	which air pollution affects human health(Gehring et al., 2013). Besides potential
389	benefits of reduced PM, NAI might also contribute to the decreases in airway
390	inflammation and oxidative stress, which might be due to the ability of NAI in
391	inhibiting growth of airborne microorganism(Krueger and Reed, 1976). Nevertheless,
392	the underlying mechanism still remains unidentified. Therefore, it should be further
393	explored considering the respiratory health effect of short-term air purification,
394	whether ionization purifier or other types, especially for children, a susceptible
395	population to particulate air pollution.
396	In addition, we observed higher ST-segment elevation associated with increases
397	in PM, which is similar to previous findings(Hanna and Glancy, 2015). However, the
<mark>398</mark>	association between ST-segment elevation and NAI was not found. Our results could
<mark>399</mark>	be an indication that reduction in PM pollution through air purification might lead to
<mark>400</mark>	lower ischemic risks among children. However, the results were different for cardiac
401	autonomic function. It was observed that increases in PM and BC were associated
402	with decreases in HF, LF and SDNN, similar to previous findings among young
<mark>403</mark>	adults and the elderly(Chen et al., 2007; Dong et al., 2018; Pan et al., 2018). Yet the
<mark>404</mark>	potential benefits from reduced particulate pollution might be overcast by increased
405	NAI. The possible biological and psychological effects of NAI have been previously

 1998; Sirota et al., 2008). For instance, exposure to NAI might improve erythrocyte deformability and aerobic metabolism(Iwama, 2004). However, the potential impact of NAI on cardiac autonomic function has not been investigated among humans. As our experimental test excluded the possibility that Holter monitoring was disturbed by NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 1998; Sirota et al., 2008). For instance, exposure to NAI might improve erythrocyte deformability and aerobic metabolism(Iwama, 2004). However, the potential impact of NAI on cardiac autonomic function has not been investigated among humans. As our experimental test excluded the possibility that Holter monitoring was disturbed by NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	400	discussed(Iwama, 2004; Nakane et al., 2002; Nimmerichter et al., 2014; Ryushi et al.,
408deformability and aerobic metabolism(Iwama, 2004). However, the potential impact409of NAI on cardiac autonomic function has not been investigated among humans. As410our experimental test excluded the possibility that Holter monitoring was disturbed by411NAI, the results could indicate that NAI might exert negative impact on cardiac412autonomic function, which could result from unknown charge-related response413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAL Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac <td>408deformability and aerobic metabolism(Iwama, 2004). However, the potential impact409of NAI on cardiac autonomic function has not been investigated among humans. As410our experimental test excluded the possibility that Holter monitoring was disturbed by411NAI, the results could indicate that NAI might exert negative impact on cardiac412autonomic function, which could result from unknown charge-related response413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac</td> <td>407</td> <td>1998; Sirota et al., 2008). For instance, exposure to NAI might improve erythrocyte</td>	408deformability and aerobic metabolism(Iwama, 2004). However, the potential impact409of NAI on cardiac autonomic function has not been investigated among humans. As410our experimental test excluded the possibility that Holter monitoring was disturbed by411NAI, the results could indicate that NAI might exert negative impact on cardiac412autonomic function, which could result from unknown charge-related response413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	407	1998; Sirota et al., 2008). For instance, exposure to NAI might improve erythrocyte
 of NAI on cardiac autonomic function has not been investigated among humans. As our experimental test excluded the possibility that Holter monitoring was disturbed by NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 of NAI on cardiac autonomic function has not been investigated among humans. As our experimental test excluded the possibility that Holter monitoring was disturbed by NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	408	deformability and aerobic metabolism(Iwama, 2004). However, the potential impact
 our experimental test excluded the possibility that Holter monitoring was disturbed by NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 our experimental test excluded the possibility that Holter monitoring was disturbed by NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	409	of NAI on cardiac autonomic function has not been investigated among humans. As
 NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 NAI, the results could indicate that NAI might exert negative impact on cardiac autonomic function, which could result from unknown charge-related response occurred in human body(Krueger and Reed, 1976). Attention has been paid to the interaction effects of PM and other environmental factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	410	our experimental test excluded the possibility that Holter monitoring was disturbed by
412autonomic function, which could result from unknown charge-related response413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	412autonomic function, which could result from unknown charge-related response413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	411	NAI, the results could indicate that NAI might exert negative impact on cardiac
413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	413occurred in human body(Krueger and Reed, 1976).414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	412	autonomic function, which could result from unknown charge-related response
414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	414Attention has been paid to the interaction effects of PM and other environmental415factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).416Therefore, we hypothesized that NAI could interact with PM and BC and417subsequently pose health impacts on people. The results exhibited significant418interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,419no significant interaction effects of gender and indoor air pollutants on420cardiorespiratory function were observed. Then we analyzed the alterations of HRV421associated with PM and BC in sham and real purification, respectively. Greater422changes were found in HF, LF and SDNN with IQR increase in PM and BC during423real purification period with high NAI. Forest environment was considered high in424NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased425HF and SDNN among women after exposure to forest environment(Lanki et al.,4262017). However, our findings implied potential negative effect of NAI on cardiac	413	occurred in human body(Krueger and Reed, 1976).
 factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015). Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	414	Attention has been paid to the interaction effects of PM and other environmental
 Therefore, we hypothesized that NAI could interact with PM and BC and subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 416 Therefore, we hypothesized that NAI could interact with PM and BC and 417 subsequently pose health impacts on people. The results exhibited significant 418 interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, 419 no significant interaction effects of gender and indoor air pollutants on 420 cardiorespiratory function were observed. Then we analyzed the alterations of HRV 421 associated with PM and BC in sham and real purification, respectively. Greater 422 changes were found in HF, LF and SDNN with IQR increase in PM and BC during 423 real purification period with high NAI. Forest environment was considered high in 424 NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	415	factors, such as temperature and noise(Huang et al., 2013; S. Wu et al., 2015).
 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	<mark>416</mark>	Therefore, we hypothesized that NAI could interact with PM and BC and
 interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 		
 no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	417	subsequently pose health impacts on people. The results exhibited significant
 420 cardiorespiratory function were observed. Then we analyzed the alterations of HRV 421 associated with PM and BC in sham and real purification, respectively. Greater 422 changes were found in HF, LF and SDNN with IQR increase in PM and BC during 423 real purification period with high NAI. Forest environment was considered high in 424 NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	 420 cardiorespiratory function were observed. Then we analyzed the alterations of HRV 421 associated with PM and BC in sham and real purification, respectively. Greater 422 changes were found in HF, LF and SDNN with IQR increase in PM and BC during 423 real purification period with high NAI. Forest environment was considered high in 424 NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	417 418	subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions,
 associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	417 418 419	subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on
 changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	417 418 419 420	 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV
 real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al., 2017). However, our findings implied potential negative effect of NAI on cardiac 	 417 418 419 420 421 	 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater
 424 NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	 424 NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	 417 418 419 420 421 422 	 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during
 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	 425 HF and SDNN among women after exposure to forest environment(Lanki et al., 426 2017). However, our findings implied potential negative effect of NAI on cardiac 	 417 418 419 420 421 422 423 	 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in
426 2017). However, our findings implied potential negative effect of NAI on cardiac	426 2017). However, our findings implied potential negative effect of NAI on cardiac	 417 418 419 420 421 422 423 424 	 subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased
		 417 418 419 420 421 422 423 424 425 	subsequently pose health impacts on people. The results exhibited significant interaction effects of NAI with PM and BC on HRV but not on pulmonary functions, no significant interaction effects of gender and indoor air pollutants on cardiorespiratory function were observed. Then we analyzed the alterations of HRV associated with PM and BC in sham and real purification, respectively. Greater changes were found in HF, LF and SDNN with IQR increase in PM and BC during real purification period with high NAI. Forest environment was considered high in NAI(Ling et al., 2010; Tammet et al., 2006). A field experiment claimed increased HF and SDNN among women after exposure to forest environment(Lanki et al.,

427	autonomic function. The difference might be because that the forest environment was
428	more natural and complicated, thus the health benefits were resulted from multiple
429	factors. In addition, the concentration of NAI was much higher than that in forest
430	environment in this study. Therefore, it could provide implications for future
431	development of ionization air purifiers. On the one hand, ionization air purifiers might
432	not be used in high PM indoor environment like the classrooms in this study. On the
433	other hand, the emission of NAI should be controlled not only for purification
434	efficiency but also for avoiding potential negative health effect.
435	We note three main strengths in this study. Firstly, it is the first study to
<mark>436</mark>	investigate the health effects of using ionization air purifiers. To note, we found
<mark>437</mark>	disparate effects between respiratory functions and cardiac autonomic function, which
<mark>437</mark> 438	could be an important indication for the application of those purifiers in the future.
437 438 439	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution,
437438439440	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this
 437 438 439 440 441 	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this study compared the purification efficiencies on indoor PM of different sizes and BC
 437 438 439 440 441 442 	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this study compared the purification efficiencies on indoor PM of different sizes and BC for the first time.
 437 438 439 440 441 442 443 	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this study compared the purification efficiencies on indoor PM of different sizes and BC for the first time. Nonetheless, this study also has certain limitations listed as follows. Firstly, air
 437 438 439 440 441 442 443 444 	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this study compared the purification efficiencies on indoor PM of different sizes and BC for the first time. Nonetheless, this study also has certain limitations listed as follows. Firstly, air purification and environmental measurement could not be measured during the night
 437 438 439 440 441 442 443 444 445 	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this study compared the purification efficiencies on indoor PM of different sizes and BC for the first time. Nonetheless, this study also has certain limitations listed as follows. Firstly, air purification and environmental measurement could not be measured during the night time. However, the primary aim of this study was to explore the short-term effect of
 437 438 439 440 441 442 443 444 445 446 	disparate effects between respiratory functions and cardiac autonomic function, which could be an important indication for the application of those purifiers in the future. Secondly, we chose children, one of the most susceptible population to air pollution, as participants to explore the health effects of ionization purification. Thirdly, this study compared the purification efficiencies on indoor PM of different sizes and BC for the first time. Nonetheless, this study also has certain limitations listed as follows. Firstly, air purification and environmental measurement could not be measured during the night time. However, the primary aim of this study was to explore the short-term effect of purification, and the repeated measurements could address the potential long-lasting

448	exposure. Secondly, we did not measure gaseous pollutants other than ozone.
449	However, in the inhabited environments such as school, gaseous pollutants are known
450	to be very low and would not alter the substantial results(Chen et al., 2017). Thirdly,
451	due to the poor operability of sampling blood from children, we did not collect blood
452	samples yet other studies did (Huichu Li et al., 2017), so we may not obtain more
453	biomarkers to some extent.
454	5. Conclusion
455	This study demonstrates that ionization air purification can reduce indoor PM
456	with high purification efficiency in school classrooms. To date, our study is firstly to
<mark>457</mark>	investigate the health effects of ionization air purification. We observed that
<mark>458</mark>	ionization air purification could elicit significant benefits to respiratory system,
<mark>459</mark>	however, these benefits were seemingly off-set by apparently negative effects on
460	cardiac autonomic function. The negative effects on HRV may be attributed to the
461	very high levels of NAI from these purifiers and further studies are urgently needed to
<mark>462</mark>	confirm if NAI is the underlying mechanism, and whether it could also have other
463	unrecognized effects on the body. These results are important for the use of this type
464	of air purifier, and due consideration is needed for the balance of potentially
465	beneficial versus negative effects of this technology, and its future development.
466	Acknowledgments

- 467 The authors gratefully thank Dr Shaowei Wu (Department of Occupational and
- 468 Environmental Health Sciences, School of Public Health, Peking University) for
- 469 comments that improved the manuscript.
- 470 Funding
- 471 This project was supported by grants of the National Key Research and
- 472 Development Program of China (2017YFC0702700, 2016YFC0206506), grants from
- 473 the National Natural Science Foundation of China [No. 81571130090, 91543112,
- 474 81072267], and the grant from China Medical Board (CMB 15-228). MRM is
- 475 supported by a British Heart Foundation Special Project Grant (SP/15/8/31575). ML
- 476 is supported by a grant from the UK Natural Environment Research Council
- 477 (Reference NE/N007182/1).

478 **References**

479 Allen, R. W., Carlsten, C., Karlen, B., Leckie, S., Van, E. S., Vedal, S., Wong, I., 480 Brauer, M., 2011. An air filter intervention study of endothelial function among 481 healthy adults in a woodsmoke-impacted community. Am. J. Respir. Crit. Care. 482 Med. 183(9), 1222-1230. https://doi.org/10.1164/rccm.201010-1572OC. 483 Almeida-Silva, M., Wolterbeek, H.T., Almeida, S.M., 2014. Elderly exposure to 484 indoor air pollutants. Atmos. Environ. 85, 54-63. https://doi.org/10.1016/j.atmosenv.2013.11.061. 485 Berry, D., Mainelis, G., Fennell, D., 2007. Effect of an ionic air cleaner on 486 487 indoor/outdoor particle ratios in a residential environment. Aerosol. Sci. Tech. 488 41, 315-328. https://doi.org/10.1080/02786820701199702. 489 Brehler, R., Kütting, B., Biel, K., Luger, T., 2003. Positive effects of a fresh air 490 filtration system on hay fever symptoms. Int. Arch. Allergy. Immunol. 130(1), 491 60-65. https://doi.org/10.1159/000068376. 492 Brown, K.W., Minegishi, T., Allen, J.G., Mccarthy, J.F., Spengler, J.D., Macintosh, 493 D.L., 2014. Reducing patients' exposures to asthma and allergy triggers in their 494 homes: An evaluation of effectiveness of grades of forced air ventilation filters. 495 J. Asthma. 51, 585-594. https://doi.org/10.3109/02770903.2014.895011. Butz, A., Matsui, E., Breysse, P., CurtinBrosnan, J., Eggleston, P., Diette, G., 496 497 Williams, D., Yuan, J., Bernert, J., Rand, C., 2011. A randomized trial of air 498 cleaners and a health coach to improve indoor air quality for inner-city children 499 with asthma and secondhand smoke exposure. Arch. Pediatr. Adolesc. Med. 500 165(8), 741-748. https://doi.org/10.1001/archpediatrics.2011.111. Calder ón-Garcidue ñas, L., Vincent, R., Mora-Tiscare ño, A., Franco-Lira, M., 501 Henr ýuez-Rold án, C., Barrag án-Mej á, G., Garrido-Garc á, L., Camacho-Reyes, 502 503 L., Valencia-Salazar, G., Paredes, R., Romero, L., Osnaya, H., Villarreal-504 Calder ón, R., Torres-Jard ón, R., Hazucha, M.J., Reed, W., 2007. Elevated 505 plasma endothelin-1 and pulmonary arterial pressure in children exposed to air 506 pollution. Environ. Health. Perspect. 115(8),1248-1253. 507 https://dx.doi.org/10.1289%2Fehp.9641. 508 Chen, J.C., Cavallari, J.M., Stone, P.H., Christiani, D.C., 2007. Obesity is a modifier 509 of autonomic cardiac responses to fine metal particulates. Environ. Health. 510 Perspect. 115, 1002-1006. https://doi.org/10.1289/ehp.9609. 511 Chen, R., Zhao, A., Chen, H., Zhao, Z., Cai, J., Wang, C., Yang, C., Li, H., Xu, X., 512 Ha, S., Li, T., Kan, H., 2015. Cardiopulmonary benefits of reducing indoor 513 particles of outdoor origin: a randomized, double-blind crossover trial of air 514 purifiers. J Am. Coll. Cardiol. 65, 2279-2287. 515 https://doi.org/10.1016/j.jacc.2015.03.553. 516 Chen, S., Gu, Y., Qiao, L., Wang, C., Song, Y., Bai, C., Sun, Y., Ji, H., Zhou, M., Wang, H., Chen, R., Kan, H., 2017. Fine particulate constituents and lung 517 dysfunction: A time-series panel study. Environ. Sci. Technol. 51, 1687-1694. 518 519 https://doi.org/10.1021/acs.est.6b03901.

520	Chen, W., Thomas, J., Sadatsafavi, M., FitzGerald, J.M., 2015. Risk of cardiovascular
521	comorbidity in patients with chronic obstructive pulmonary disease: a systematic
522	review and meta-analysis. Lancet. Respir. Med. 3, 631-639.
523	https://doi.org/10.1016/S2213-2600(15)00241-6.
524	Chuang, H.C., Ho, K.F., Lin, L.Y., Chang, T.Y., Hong, G.B, Ma, C.M., Liu, I.J.,
525	Chuang, K.J., 2017. Long-term indoor air conditioner filtration and
526	cardiovascular health: A randomized crossover intervention study. Environ. Int.
527	106, 91-96. https://doi.org/10.1016/j.envint.2017.06.008.
528	Cui, X., Li, F., Xiang, J., Fang, L., Chung, M.K., Day, D.B., Mo, J., Weschler, C.J.,
529	Gong, J., He, L., Zhu, D., Lu, C., Han, H., Zhang, Y., Zhang, J.J., 2018.
530	Cardiopulmonary effects of overnight indoor air filtration in healthy non-
531	smoking adults: A double-blind randomized crossover study. Environ. Int. 114,
532	27-36. https://doi.org/10.1016/j.envint.2018.02.010.
533	Day, D.B., Xiang, J., Mo, J., Clyde, M.A., Weschler, C.J., Li, F., Gong, J., Chung M.,
534	Zhang, Y., Zhang, J., 2017a. Combined use of an electrostatic precipitator and a
535	hepa filter in building ventilation systems: Effects on cardiorespiratory health
536	indicators in healthy adults. Indoor. Air. 28,360-372.
537	https://doi.org/10.1111/ina.12447.
538	Day, D.B., Xiang, J., Mo, J., Li, F., Chung, M., Gong, J., Weschler, C.J., Ohman-
539	Strickland, P.A., Sundell, J., Weng, W., Zhang, Y., Zhang, J.J., 2017b.
540	Association of ozone exposure with cardiorespiratory pathophysiologic
541	mechanisms in healthy adults. JAMA. Intern. Med. 177, 1344-1353.
542	https://doi.org/10.1001/jamainternmed.2017.2842.
543	Dietert, R. R., Etzel, R. A., Chen, D., Halonen, M., Holladay, S. D., Jarabek, A. M.,
544	Landreth, K., Peden, D. B., Pinkerton, K., Smialowicz, R. J., Zoetis, T., 2000.
545	Workshop to identify critical windows of exposure for children's health: immune
546	and respiratory systems work group summary. Environ. Health. Perspect.
547	108(Suppl 3), 483-490. https://doi.org/10.1289/ehp.00108s3483.
548	Dong, W., Pan, L., Li, H., Miller, M.R., Loh, M., Wu, S., , Xu, J., Yang, X., Shan, J.,
549	Chen, Y., Deng, F., Guo, X., 2018. Association of size-fractionated indoor
550	particulate matter and black carbon with heart rate variability in healthy elderly
551	women in beijing. Indoor. Air. 28, 373-382. <u>https://doi.org/10.1111/ina.12449</u> .
552	Gao, Y., Chan, E.Y., Li, L.P., He, Q.Q., Wong, T.W., 2013. Chronic effects of
553	ambient air pollution on lung function among Chinese children. Arch. Dis. Child.
554	98, 128-135. http://dx.doi.org/10.1136/archdischild-2011-301541.
555	Gehring, U., Gruzieva, O., Agius, R. M., Beelen, R., Custovic, A., Cyrys, J., Eeftens,
556	M., Flexeder, C., Fuertes, E., Heinrich, J., Hoffmann, B., de Jongste, J. C.,
557	Kerkhof, M., Klümper, C., Korek, M., Mölter, A., Schultz, E. S., Simpson, A.,
558	Sugiri, D., Svartengren, M., von Berg, A., Wijga, A. H., Pershagen, G., &
559	Brunekreef, B., 2013. Air pollution exposure and lung function in children: the
560	ESCAPE project. Environ. Health. Perspect. 121(11-12): 1357-1364.
561	https://doi:10.1289/ehp.1306770.

562	Grabarczyk, Z., 2001. Effectiveness of indoor air cleaning with corona ionizers. J.
563	Electrostat. s51-52, 278-283. https://doi.org/10.1016/S0304-3886(01)00058-4.
564	Grinshpun, S.A., Mainelis, G., Trunov, M., Adhikari, A., Reponen, T., Willeke, K.,
565	2005. Evaluation of ionic air purifiers for reducing aerosol exposure in confined
566	indoor spaces. Indoor. Air. 15, 235-245. https://doi.org/10.1111/j.1600-
567	0668.2005.00364.x.
568	Hanna, E. B., Glancy, D. L., 2015. ST-segment elevation: Differential diagnosis,
569	caveats. Cleve. Clin. J. Med. 82(6), 373-384.
570	https://doi.org/10.3949/ccjm.82a.14026.
571	Hoek, G., Pattenden, S., Willers, S., Antova, T., Fabianova, E., Braun-Fahrl änder, C.,
572	Forastiere, F., Gehring, U., Luttmann-Gibson, H., Grize, L., Heinrich, J.,
573	Houthuijs, D., Janssen, N., Katsnelson, B., Kosheleva, A., Moshammer, H.,
574	Neuberger, M., Privalova, L., Rudnai, P., Speizer, F., Slachtova, H., Tomaskova,
575	H., Zlotkowska, R., Fletcher, T., 2012. PM_{10} , and children's respiratory
576	symptoms and lung function in the paty study. Euro. Respir. J. 40(3), 538-547.
577	https://doi.org/10.1183/09031936.00002611.
578	Horv áth, I., Hunt, J., Barnes, P.J., 2005. Exhaled breath condensate: methodological
579	recommendations and unresolved questions. Euro. Respir. J. 26(3), 523-548.
580	https://doi.org/10.1183/09031936.05.00029705.
581	Huang, J., Deng, F., Wu, S., Lu, H., Hao, Y., Guo, X., 2013. The impacts of short-
582	term exposure to noise and traffic-related air pollution on heart rate variability in
583	young healthy adults. J. Expo. Sci. Environ. Epidemiol. 23(5), 559-564.
584	https://doi.org/10.1038/jes.2013.21.
585	Iwama, H., 2004. Negative air ions created by water shearing improve erythrocyte
586	deformability and aerobic metabolism. Indoor. Air. 14(4), 293-297.
587	https://doi.org/10.1111/j.1600-0668.2004.00254.x.
588	Kajbafzadeh, M., Brauer, M., Karlen, B., Carlsten, C., Eeden, S.V., Allen, R.W.,
589	2015. The impacts of traffic-related and woodsmoke particulate matter on
590	measures of cardiovascular health: A HEPA filter intervention study. Occup.
591	Environ. Med. 72(6), 394-400. https://doi.org/10.1136/oemed-2014-102696.
592	Karottki, D. G., Spilak, M., Frederiksen, M., Gunnarsen, L., Brauner, E. V., Kolarik,
593	B., Andersen, Z. J., Sigsgaard, T., Barregard, L., Strandberg, B., 2013. An indoor
594	air filtration study in homes of elderly: cardiovascular and respiratory effects of
595	exposure to particulate matter. Environ. Health. 12(1), 116-116. https://doi:
596	10.1186/1476-069X-12-116.
597	Karottki, D.G., Bekö, G., Clausen, G., Madsen, A.M., Andersen, Z.J., Massling, A.,
598	Ketzel, M., Ellermann, T., Lund, R., Sigsgaard, T., Møller, P., Loft, S., 2014.
599	Cardiovascular and lung function in relation to outdoor and indoor exposure to
600	fine and ultrafine particulate matter in middle-aged subjects. Environ. Int. 73,
601	372-381. https://doi.org/10.1016/j.envint.2014.08.019.
602	Karottki, D.G., Spilak, M., Frederiksen, M., Jovanovic, A.Z., Madsen, A.M., Ketzel,
603	M., Massling, A., Gunnarsen, L., Møller, P., Loft, S., 2015. Indoor and outdoor

604 exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban 605 606 citizens. Int. J. Env. Res. Pub. Hea. 12(2), 1667-1686. 607 https://doi.org/10.3390/ijerph120201667. Klepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., 608 609 Behar, J.V., Hern, S.C., Engelmann, W.H., 2001. The national human activity 610 pattern survey (NHAPS): A resource for assessing exposure to environmental 611 pollutants. J. Expo. Anal. Environ. Epidemiol. 11(3), 231-252. https://doi.org/10.1038/sj.jea.7500165. 612 613 Krueger, A.P., Reed, E.J., 1976. Biological impact of small air ions. Science. 193, 1209-1213. 614 615 Langrish, J.P., Li, X., Wang, S., Lee, M.M.Y., Barnes, G.D., Miller, M.R., Cassee, F.R., Boon, N.A., Donaldson, K., Li, J., Li, L., Mills, N.L., Newby, D.E., Jiang, 616 L., 2012. Reducing personal exposure to particulate air pollution improves 617 618 cardiovascular health in patients with coronary heart disease. Enviro. Health. 619 Perspect. 120(3), 367-372. https://doi.org/10.1289/ehp.1103898. 620 Lanki T., Siponen T., Ojala A., Korpela K., Pennanen A., Tiittanen P., Tsunetsugu, Y., 621 Kagawa, T., Tyrv änen, L., 2017. Acute effects of visits to urban green 622 environments on cardiovascular physiology in women: A field experiment. Environ. Res. 159, 176-185. https://doi.org/10.1016/j.envres.2017.07.039. 623 624 Lanphear, B. P., Hornung, R. W., Khoury, J., Yolton, K., Lierl, M., Kalkbrenner, A., 625 2011. Effects of HEPA air cleaners on unscheduled asthma visits and asthma 626 symptoms for children exposed to secondhand tobacco smoke. Pediatrics. 127(1), 93-101. https://doi.org/10.1542/peds.2009-2312. 627 Lärstad, M., Ljungkvist, G., Olin, A.C., Torén, K., 2002. Determination of 628 629 malondialdehyde in breath condensate by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B. 766,107-114. 630 https://doi.org/10.1016/S0378-4347(01)00437-6. 631 632 Li, Huichu, Cai, J., Chen, R., Zhao, Z., Ying, Z., Wang, L., Chen, J., Hao, K., Kinney, 633 P. L., Chen, H., Kan, H., 2017. Particulate matter exposure and stress hormone 634 levels: a randomized, double-blind, crossover trial of air purification. 635 Circulation, 136(7), 618-627. https://doi:10.1161/circulationaha.116.026796 636 Li, Hongyu, Wu, S., Pan, L., Xu, J., Shan, J., Yang, X., Dong, W., Deng, F., Chen, Y., 637 Shima, M., Guo, X., 2017. Short-term effects of various ozone metrics on cardiopulmonary function in chronic obstructive pulmonary disease patients: 638 Results from a panel study in Beijing, China. Environ. Pollut. 232, 358-366. 639 https://doi.org/10.1016/j.envpol.2017.09.030. 640 641 Lin, H., Tao, J., Du, Y., Liu, T., Qian, Z., Tian, L., Di, Q., Rutherford, S., Guo, L., 642 Zeng, W., Xiao, J., Li, X., He, Z., Xu, Y., Ma, W., 2016. Particle size and chemical constituents of ambient particulate pollution associated with 643 cardiovascular mortality in Guangzhou, China. Environ. Pollut. 208, 758-766. 644 645 https://doi.org/10.1016/j.envpol.2015.10.056.Ling, X., Jayaratne, R., Morawska,

646	L., 2010. Air ion concentrations in various urban outdoor environments. Atmos.
647	Environ. 44(18), 2186-2193. https://doi.org/10.1016/j.atmosenv.2010.03.026.
648	Liu, S., Chen, J., Zhao, Q., Song, X., Shao, D., Meliefste, K., Du, Y., Wang, J., Wang,
649	M., Wang, T., Feng, B., Wu, R., Xu, H., Bei, H., Brunekreef, B., Huang, W.,
650	2018. Cardiovascular benefits of short-term indoor air filtration intervention in
651	elderly living in Beijing: An extended analysis of BIAPSY study. Environ. Res.
652	167, 632-638. https://doi.org/10.1016/j.envres.2018.08.026.
653	Luo, J., Chen, Z., Guo, J., Guo, Z., Lan, X., Sun, B., 2018. Efficacy of air purifier
654	therapy in allergic rhinitis. Asian. Pac J. Allergy. Immunol. 36, 217-221.
655	DOI:10.12932/AP-010717-0109.
656	Miller, M.R., Hankinson, J.L., Brusasco, V., 2005. Standardisation of spirometry
657	"ATS/ERS task force: Standardisation of lung function testing". Euro. Respir. J.
658	26(2), 319-338. https://doi.org/10.1183/09031936.05.00034805.
659	Mo H., 2017. Beijing to pilot air purifiers in schools, kindergartens.
660	http://www.ecns.cn/cns-wire/2017-01-06/detail-ifytetzm3107576.shtml.
661	[accessed Octobor 12th 2018].
662	Morgenstern V., Zutavern A., Cyrys J., Brockow I., Koletzko S., Krämer U.,
663	Behrendt, H., Herbarth, O., von Berg, A., Bauer, C.P., Wichmann, H.E.,
664	Heinrich, J., 2008. Atopic diseases, allergic sensitisation and exposure to traffic-
665	related air pollution in children. Am. J. Respir. Crit. Care. Med. 177(12), 1331-
666	1337. https://doi.org/10.1164/rccm.200701-036OC.
667	Nakane, H., Asami, O., Yamada, Y., Ohira, H., 2002. Effect of negative air ions on
668	computer operation, anxiety and salivary chromogranin a-like immunoreactivity.
669	Int. J. Psychophysiol. 46, 85-89. https://doi.org/10.1016/S0167-8760(02)00067-
670	3.
671	Nimmerichter, A., Holdhaus, J., Mehnen, L., Vidotto, C., Loidl, M., Barker, A.R.,
672	2014. Effects of negative air ions on oxygen uptake kinetics, recovery and
673	performance in exercise: A randomized, double-blinded study. Int. J.
674	Biometeorol. 58, 1503-1512. https://doi.org/10.1007/s00484-013-0754-8.
675	Niu, J.L., Tung, T.C.W., Burnett, J., 2001. Quantification of dust removal and ozone
676	emission of ionizer air-cleaners by chamber testing. J. Electrostat. 51, 20-24.
677	https://doi.org/10.1016/S0304-3886(01)00118-8.
678	Pan, L., Wu, S., Li, H., Xu, J., Dong, W., Shan, J., Yang, X., Chen, Y., Shima, M.,
679	Deng, F., Guo, X., 2018. The short-term effects of indoor size-fractioned
680	particulate matter and black carbon on cardiac autonomic function in copd
681	patients. Environ. Int. 112, 261-268.
682	https://doi.org/10.1016/j.envint.2017.12.037.
683	Peltier R.E., 2005. ATS/ERS recommendations for standardized procedures for the
684	online and offline measurement of exhaled lower respiratory nitric oxide and
685	nasal nitric oxide, 2005. Am. J. Res. Crit. Care. Medi. 171, 912-930.
686	https://doi.org/10.1164/rccm.200406-710ST.
687	

688	Ryushi, T., Kita, I., Sakurai, T., Yasumatsu, M., Isokawa, M., Aihara, Y., Hama, K.,
689	1998. The effect of exposure to negative air ions on the recovery of physiological
690	responses after moderate endurance exercise. Int. J. Biometeorol. 41, 132-136.
691	https://doi.org/10.1007/s004840050066.
692	
693	Shiue, A., Hu, S.C., 2011. Contaminant particles removal by negative air ionic cleaner
694	in industrial minienvironment for ic manufacturing processes. Build. Environ.
695	46,1537-1544. https://doi.org/10.1016/j.buildenv.2011.01.006.
696	Sirota, T.V., Safronova, V.G., Amelina, A.G., Mal'Tseva, V.N., Avkhacheva, N.V.,
697	Sofin, A.D., , Ianin, V.A., Mubarakshina, E.K., Romanova, L.K., Novoselov, V.I.,
698	2008. The effect of negative air ions on the respiratory organs and blood.
699	Biophysics. 53, 457-462. https://doi.org/10.1134/S0006350908050242.
700	Skulberg, K.R., Skyberg, K., Kruse, K., Eduard, W., Levy, F., Kongerud, J.,
701	Djupesland, P., 2005. The effects of intervention with local electrostatic air
702	cleaners on airborne dust and the health of office employees. Indoor. Air. 15,
703	152-159. https://doi.org/10.1111/j.1600-0668.2005.00331.x.
704	Tammet, H., Hõrrak, U., Laakso, L., Kulmala, M., 2006. Factors of air ion balance in
705	a coniferous forest according to measurements in Hyyti äl ä, Finland. Atmos.
706	Chem. Phys. 6(2), 3377-3390. http://dx.doi.org/10.5194/acp-6-3377-2006.
707	Tian, Y. Z., Shi, G. L., Han, B., Wu, J. H., Zhou, X. Y., Zhou, L. D., Zhang, P., Feng,
708	Y. C., 2015. Using an improved Source Directional Apportionment method to
709	quantify the PM _{2.5} source contributions from various directions in a megacity in
710	China. Chemosphere. 119, 750-756.
711	http://dx.doi.org/10.1016/j.chemosphere.2014.08.015.
712	Weichenthal, S., Mallach, G., Kulka, R., Black, A., Wheeler, A., You, H., St-Jean, M.,
713	
/15	Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of
713 714	Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First
713 714 715	Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019.
713714715716	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-
714 715 716 717	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma
713 714 715 716 717 718	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ.
714 715 716 717 718 719	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844.
713 714 715 716 717 718 719 720	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for
714 715 716 717 718 719 720 721	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012.
713 714 715 716 717 718 719 720 721 722	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of
713 714 715 716 717 718 719 720 721 722 723	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289% 2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of exposure and burden of disease.
713 714 715 716 717 718 719 720 721 722 723 724	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of exposure and burden of disease. Wu, S., Deng, F., Niu, J., Huang, Q., Liu, Y., Guo, X., 2010. Association of heart rate
 713 714 715 716 717 718 719 720 721 722 723 724 725 	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of exposure and burden of disease. Wu, S., Deng, F., Niu, J., Huang, Q., Liu, Y., Guo, X., 2010. Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in
 713 714 715 716 717 718 719 720 721 722 723 724 725 726 	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of exposure and burden of disease. Wu, S., Deng, F., Niu, J., Huang, Q., Liu, Y., Guo, X., 2010. Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in beijing in 2008. Environ. Health. Perspect. 118, 87-91.
 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Short-term effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of exposure and burden of disease. Wu, S., Deng, F., Niu, J., Huang, Q., Liu, Y., Guo, X., 2010. Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in beijing in 2008. Environ. Health. Perspect. 118, 87-91. https://doi.org/10.1289/ehp.0900818.
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728	 Kwiatkowski, R., Sharp, D., 2013. A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor. Air. 23, 175-184. https://doi.org/10.1111/ina.12019. Weinmayr, G., Romeo, E., De Sario, M., Weiland, S.K., Forastiere, F., 2010. Shortterm effects of PM₁₀ and NO₂ on respiratory health among children with asthma or asthma-like symptoms: A systematic review and meta-analysis. Environ. Health. Perspect. 118, 449-457. http://dx.doi.org/10.1289%2Fehp.0900844. World Health Organization., 2014. Burden of disease from household air pollution for 2012. World Health Organization., 2016. Ambient air pollution a global assessment of exposure and burden of disease. Wu, S., Deng, F., Niu, J., Huang, Q., Liu, Y., Guo, X., 2010. Association of heart rate variability in taxi drivers with marked changes in particulate air pollution in beijing in 2008. Environ. Health. Perspect. 118, 87-91. https://doi.org/10.1289/ehp.0900818. Wu, S., Deng, F., Huang, J., Wang, X., Qin, Y., Zheng, C., Wei H, Shima M, Guo X.,

730	pressure? A repeated-measure study in healthy adults. J. Hypertens. 33(12),
731	2414-2421. https://doi.org/10.1097/HJH.000000000000738.
732	
733	Zhao, B., Chen, C., Zhou, B., 2018. Is there a timelier solution to air pollution in
734	today's cities? Lancet. Planetary. Health. 2, e240. https://doi.org/10.1016/S2542-
735	5196(18)30082-2.
736	Zheng, Y., Chen, H., Yao, M., Li, X., 2017. Bacterial pathogens were detected from
737	human exhaled breath using a novel protocol. J. Aerosol. Sci. 117, 224-234.
738	https://doi.org/10.1016/j.jaerosci.2017.12.009.
739	
740	

Characteristics				
Number	44			
Male (%)	24 (55)			
Female (%)	20 (45)			
Age, years				
Mean ±SD	12.4 ± 0.8			
Median	12			
Range	11-14			
BMI, kg/m ²				
Mean ±SD	18.7 ± 3.3			
Median	18.1			
Range	14.2-33.5			

Table 1 Demographic characteristics for the study participants

743 Abbreviation: SD, standard deviation; BMI, body mass index.

Table 2 Comparison of indoor exposure measurements and health measurements between sham

745 purification and real purification

Variables	N ^a	Sham-purification	Real-purification	P value		
		(Mean ±SD)	(Mean ±SD)			
Exposure measurements						
$PM_{0.5},\mu g/m^3$	3097	18.8 ± 13.9	9.8 ±8.9	< 0.05*		
$PM_{1.0},\mu\text{g}/m^3$	3097	36.4 ±21.1	19.2 ± 10.2	< 0.05*		
$PM_{2.5},\mu\text{g}/\text{m}^3$	3097	72.5 ± 30.3	40.8 ±13.3	< 0.05*		
$PM_{5.0},\mu\text{g}/\text{m}^3$	3097	375.2 ± 180.3	242.8 ± 160.2	<0.01**		
$PM_{10}, \mu g/m^3$	3097	923.6 ± 360.8	608.9 ± 280.6	<0.01**		
BC, $\mu g/m^3$	3097	4.4 ±2.1	2.2 ± 1.3	< 0.01***		
O ₃ , µg/m ³	3097	21 ± 6	19 ± 5	0.28		
NAI, cm ⁻³	3097	12 ± 10	12997 ± 3814	<0.001***		
RH, %	3127	53.3 ±8.5	54.4 ± 8.2	0.70		
Temperature, $^{\circ}$ C	3127	16.7 ±4.4	15.2 ±4.3	0.36		
Noise, dB	3127	69.3 ±2.6	70.1 ±2.5	0.23		
CO ₂ , μg/m ³	3127	$2410\ \pm 1027$	$2865\ \pm 1044$	0.29		
Health measurements						
FEV ₁ , L	257	2.19 ± 0.50	2.34 ±0.45	<0.01**		
PEF, L/min	257	343 ±80	346 ±85	0.41		
FeNO, ppb	257	17 ±7	15 ±8	< 0.01**		
MDA, µmol/L	257	0.24 ± 0.15	0.20 ± 0.14	0.06		
SBP, mmHg	257	106 ±7	105 ±8	0.76		
DBP, mmHg	257	64 ±6	64 ±6	0.96		
PP, mmHg	257	40 ±5	41 ±6	0.86		
HF, ms ²	9100	381.4 ±346.9	349.6 ± 338.7	< 0.001***		
LF, ms ²	9100	982.8 ± 656.9	950.8 ± 619.3	< 0.001***		
SDNN, ms	9100	65 ±23	64 ±22	< 0.001***		
LF/HF	9100	4.0 ±3.3	4.3 ±3.2	< 0.001***		
HR, min ⁻¹	9100	91 ±13	92 ±12	< 0.001***		
II_ST, mV	825	0.13 ± 0.10	0.12 ± 0.11	0.49		
V2_ST, mV	825	0.28 ± 0.16	0.27 ± 0.15	0.57		
V5_ST, mV	825	0.10 ± 0.11	0.09 ± 0.10	<0.01**		

- Abbreviation: SD, standard deviation, PM, particulate matter; BC, black carbon; O₃, ozone; NAI,
- negative air ion; RH, relative humidity; CO2, carbon dioxide; FEV₁, forced expiratory volume in the
- 748 first second; PEF, peak expiratory flow; FeNO, fractional exhaled nitrogen oxide; MDA,
- 749 Malondialdehyde; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; HF,
- power in high frequency; LF, power in low frequency; SDNN, standard deviation of all NN intervals;
- 751 LF/HF, LF to HF ratio; HR, heart rate.
- ^aObservation after excluding all missing values and abnormities.

Table 3 Comparisons of health measurements on Monday mornings and Friday afternoons between
 sham and real purification

Sham-purification Real-purification Difference P value

753

Variables

N^a

		(Mean ±SD)	(Mean \pm SD)		
FEV ₁ , L					
Monday morning	42	2.23 ± 0.51	2.25 ± 0.44	0.02	0.48
Friday afternoon	40	2.22 ± 0.52	2.38 ± 0.48	0.16	<0.05*
PEF, L/min					
Monday morning	42	317 ± 73	321 ± 76	4	0.68
Friday afternoon	40	353 ± 89	356 ± 95	3	0.53
FeNO, ppb					
Monday morning	42	19 ± 10	18 ± 11	-1	0.71
Friday afternoon	40	18 ± 8	14 ± 7	-4	<0.01**
SBP, mmHg					
Monday morning	42	108 ± 10	107 ± 9	-1	0.30
Friday afternoon	40	106 ± 7	105 ± 7	-1	0.12
DBP, mmHg					
Monday morning	42	68 ± 8	66 ± 7	-2	0.25
Friday afternoon	40	65 ± 6	63 ± 6	-2	<0.05*
PP, mmHg					
Monday morning	42	41 ± 7	41 ± 5	1	0.82
Friday afternoon	40	41 ± 6	41 ± 5	1	0.59

Abbreviation: SD, standard deviation; FEV₁, forced expiratory volume in the first second; PEF, peak

expiratory flow; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure.

758 ^aObservation after excluding all missing values and abnormities.

Figure 1 Flow chart of the study.

Figure 2 (A) Estimated percent changes with 95% confidence intervals in health measurements (except ST segments) with real purification; (B) Estimated changes with 95% confidence intervals in ST segments elevation with real purification. ^{a.} Abbreviations: FEV₁ (N=257), forced expiratory volume in the first second; PEF (N=257), peak expiratory flow; FeNO (N=257), fractional exhaled nitrogen oxide; MDA (N=257), Malondialdehyde; SBP (n=257), systolic blood pressure; DBP (N=257), diastolic blood pressure; PP (N=257), pulse pressure; HF (N=9100), power in high frequency; LF (N=9100), power in low frequency; SDNN, standard deviation of all NN intervals; LF/HF (N=9100), LF to HF ratio; HR (N=9100), heart rate. ^{b.} II_ST (N=825); V2_ST (N=825); V5_ST (N=825). ^{c.} N: number of observation.

Figure 3 (A) Estimated percent changes with 95% confidence intervals in respiratory measurements per IQR increases in size-fractionated PM and BC; (B) Estimated percent changes with 95% confidence intervals in HRV indices per IQR increases in size-fractionated PM and BC over different moving averages. (B1) HF; (B2) LF; (B3) SDNN (C) Estimated changes with 95% confidence intervals in ST segment elevation per IQR increases in size-fractionated PM and BC.

 a Abbreviations: FEV₁ (N=257), forced expiratory volume in the first second; PEF (N=257), peak

expiratory flow; FeNO (N=257), fractional exhaled nitrogen oxide; MDA (N=257), Malondialdehyde;

SBP (n=257), systolic blood pressure; DBP (N=257), diastolic blood pressure; PP (N=257), pulse

pressure; HF (N=9100), power in high frequency; LF (N=9100), power in low frequency; SDNN,

standard deviation of all NN intervals.

 $799 \qquad {}^{\rm b.} \ II_ST \ (N=825); \ V2_ST \ (N=825); \ V5_ST \ (N=825).$

800 ^{c.} N: number of observation.

 $801 \qquad {}^{d} \ IQR \ increases: PM_{0.5}, 17.9 \ \mu g/m^3; PM_{1.0}, 22.2 \ \mu g/m^3; PM_{2.5}, 26.7 \ \mu g/m^3; PM_{5.0}, 170.0 \ \mu g/m^3; PM_{10}, 170.0 \ \mu g/m^3; PM_{10},$

 $802 \qquad 331.7 \; \mu g/m^3; \, BC, \, 3.6 \; \mu g/m^3$

⁸⁰⁸ fractionated PM and BC at 5min moving average in sham-purification group and real-

811 scenario. (A) HF; (B) LF; (C) SDNN.

- 813 frequency; LF (N=4523 for sham purification; N=4577 for real purification), power in low frequency;
- 814 SDNN (N=4523 for sham purification; N=4577 for real purification), standard deviation of all NN
- 815 intervals.

⁸⁰⁹ purification group, respectively. Solid squares: effect estimated in sham purification

^{810 (}low NAI) scenario; **open triangles**: effect estimated in real purification (high NAI)

^{812 &}lt;sup>a.</sup> Abbreviations: HF (N=4523 for sham purification; N=4577 for real purification), power in high

- 816 ^{b.} N: number of observation.
- $817 \qquad {}^{c.} \ IQR \ increases: PM_{0.5}, \ 17.9 \ \mu g/m^3; \ PM_{1.0}, \ 22.2 \ \mu g/m^3; \ PM_{2.5}, \ 26.7 \ \mu g/m^3; \ PM_{5.0}, \ 170.0 \ \mu g/m^3; \ PM_{10}, \ 20.2 \ \mu g/m^3; \ PM_{10}, \ 10.2 \ \mu g/m^3; \ PM_{10}, \ PM$
- $818 \qquad 331.7 \; \mu \text{g/m}^3; \text{BC}, \, 3.6 \; \mu \text{g/m}^3$